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NOTE

Fast Algorithm for the Conversion of R to Lambda
Values in Field-Flow Fractionation

MARK. R. SCHURE

LABORATORY DATA PRODUCTS GROUP
DIGITAL EQUIPMENT CORPORATION

1 IRON WAY

MARLBORQUGH, MASSACHUSETTS 01752

Abstract

The numerical methodology needed to convert the retention ratio, R, to the
dimensionless mean layer thickness, A, commonly encountered in field-flow
fractionation (FFF), is reviewed and a rigorous interpolation scheme which is
suitable for any of the FFF techniques is presented. Computer implementation
and error estimates are discussed in detail.

INTRODUCTION

A common operation found in all field-flow fractionation (FFF)
experiments is the routine conversion of the fractogram on a time scale to
a fractogram on a A scale. Although this operation would at first seem
trivial due to the wealth of theory which exists, in fact this operation is
nontrivial because there is virtually no analytical form available for this
operation with sufficient accuracy over the entire elution range. This is in
contrast to a number of mathematical equations which express R, the
retention ratio, as an anaiytical function of A, the dimensionless mean
layer thickness. Once the fractogram is converted to an elution scale in
the A domain, it is easy to convert to molecular weight or particle size for
the techniques of thermal FFF (7), sedimentation FFF (2), electrical FFF
(3), and flow FFF (4).
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A number of numerical techniques exist for the interpolation of values
in the independent variable, given the dependent variable value and a
relationship relating one to the other. In this note we consider a most
rigorous, noniterative approach to this inversion problem and provide
specific details of its implementation with respect to any of the field-flow
fractionation techniques.

THEORY

An experimental fractogram records the concentration or some
detector response similar to concentration as a function of time. The first
transformation to be made is to convert the retention time, ¢,, to the
dimensionless parameter R, the retention ratio, which is related to
retention time by

R =1y/t, (1)

where 1, is the void time. From a fundamental standpoint, R is related to
the average velocity of zone migration by

_ <clx)-vx)>
k= <c(x)><v(x)> 2

where c(x) is the concentration of the solute zone as a function of x, the
distance above the lower channel wall, and v(x) is the fluid velocity as a
function of x. The operator <> denotes a cross-sectional average. The
quantity R can be analytically expressed as a function of A:

1
R= h|—| —12A2 3
62 cot [n] A 3)

Although this expression has been found adequate for sedimentation
FFF, flow FFF, and electrical FFF due to the uniform viscosity across the
channel width, further research has shown that a much more complex
expression is required for thermal FFF (I) to include the effect of
temperature dependence on fluid viscosity. We will now review the
numerical procedures which have been used to obtain A when R is
given.
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NUMERICAL METHODOLOGY

It is beyond the scope of this note to review all of the available
methodology for finding an independent variable, given the dependent
variable. Some of these methods are reviewed in Ref. 5. The most
common method of finding A, given R, is to express Eq. (3) as a root-
finding problem, ie.,

_ RS NP
R 6)\coth[2}\] 1222 = 0 (4)

For this technique it is desired to find A, given R, so that Eq. (4) is
satisfied. A common approach to this is to use the bisection method (5),
where it is assumed that A is between some range {A,\,,,} and this range is
iteratively searched via an algorithmic procedure which typically halves
the search range every iteration. This is continued until some criteria of
convergence is achieved. Although this method gives reasonable ac-
curacy, it is slow and is not robust because of difficulties in picking the
search range. It is not obvious, a priori, what this range should be, and
some form of lookup table is needed for proper operation.

Another method of finding A, given R, is to minimize the left-hand side
of Eq. (4) using a minimization algorithm, such as the Newton-Raphson
method (5), whereby an initial guess of A is made, given R, and iteration is
performed until some convergence criterion is met. Preliminary work has
shown that even with a very robust routine from a major mathematical
software vendor, convergence was not achieved for some R'values greater
than 0.3, even when the exact A was used as the initial guess. In all of the
methods similar to the Newton-Raphson method, there is no guarantee of
convergence here even when the parameter to be obtained is under
numerical constraints.

Another method to be considered and extensively investigated in
preliminary work is the use of an interpolating polynomial of the form

A=a,+ aR+ aR*+ a,R" (5)

where the coefficients a, through a, are chosen so that the least-squares
criterion is minimized:

min = Z()\., - [ao +aR; + azR,2 + anR?])2 (6)

In practice, this method may only be approached as a piecewise
approximation, i.e., a valid range of R (and hence A) is chosen so that
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unique coefficients are determined over a narrow range. This is noted to
occur because A changes drastically with R when R approaches unity, yet
A changes only slowly with R at low values of R. This is shown in Fig. 1
using Eq. (3) with the axes reversed for plotting. This aspect also explains
some of the difficulty encountered with the Newton-Raphson method. A
further difficulty with the polynomial method is that most polynomials
are numerically unstable for large values of the independent variable
).

Along the lines of a polynomial expression, such as that used in Eq. (5),
a more rigorous method is that of piecewise interpolation with Padé
approximation (5), whereby the ratio of polynomials is used as a basis
function over a narrow range of R:

4.00
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<
=
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0.00 =T T T T T

0.00 0.20 0.40 0.60 0.80 1.00

R

FIG. 1. A as a function of R using the relutionship established by Eq (M.
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_aotaR + aR>+ a,R"

A 1+ bR+ b,R*+ b,R" )

This approach has been used in preliminary work with some degree of
success although six piecewise ranges must be employed to obtain
accuracy of 1 part in 1000 in the higher A range with a quadratic basis in
the numerator and denominator of Eq. (7). A problem with the functional
form of Eq. (7) is that a great deal of work is needed to optimize the
coefficients, and the maximum degree of the basis functions is not clearly
defined although Eq. (7) can be written so that orthogonal expressions
are used. When orthogonal functions are used in Eq. (7), further accuracy
can be obtained by increasing the basis degree (until numerical
instability sets in) because the coefficients a and b are independent of the
number of terms used in the numerator and the denominator. This
approach is also inflexible in research because one would like to be able
to change easily the functional form of R, as a function of A, without the
burden of determining a new set of coefficients. Toward this end, an
extensively tested algorithm combining a sophisticated lookup table with
quadratic interpolation in R rather than in A is presented.

R TO LAMBDA CONVERSION

All software used here was written in FORTRAN 77 and executed on a
microVAX II (Digital Equipment Corp., Maynard, Massachusetts); the
code will also run on a small microcomputer since it is short in length
and requires little memory. The software described here is in the form of
a subroutine. The main program calls this subroutine and passes an
array of R values and the number of R values to be analyzed. The
subroutine passes back the A values in an array. The R values are
assumed to be monotonically decreasing, as would be the case in a
normal fractogram. The R values are also assumed to be in the range
0.9999 > R > 0.00001. If these conditions are not met, an error code is
passed back to the calling program.

The first step taken in the program is to calculate a table of A values
and the corresponding R values via Eg. (3), although in research
applications where Eq. (3) may not be used, the same procedure is used.
Nonuniform spacing is used in this table as indicated in Table 1. This is
done to ensure that the polynomial interpolation is performed on a very
finely spaced grid where known deviations from quadratic behavior lie.
The search is then started on the R lookup table data searching from high
R values to low R values until R values are found such thatR, > R andR,,,
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TABLE 1
Spacing and Number of Data Values in the Lookup Table

Number of data

Range in A Corresponding R range in lookup table
1<AK10 0.98372 < R < 0.99983 451
0.1 <A<K0.995 0.48005 < R < 0.98356 198
0.01 <A <0.099 5.8800 X 1072 < R < 0.47643 90
0.0001 < A < 0.0099 59988 X 1074 < R < 5.8224 X 1072 99
0.0000001 < A < 0.000099 59999 X 1077/ <R < 59388 X 107* 99

< R, where the subscript denotes the index of R in the lookup table. If this
condition is not found, an error condition is reported. Next, Lagrange
interpolation (5) is performed to find the local quadratic equation

R=gqg,+ al+ a)\ (8)

The formulas for Lagrange interpolation expressed in the form of this
problem are

o = boAicihis + b AA o + bR 9

a, = bo(—Aivr = Aya) = bi(A + Ayn) — ba(h + Ay) (10)

02=b0+b1+b2 (11)
and
R.
b, = ! 12
0 ()\'i - A‘Hl) ' (}"i - }\i+2) ( )
R.
b, = i+1 13
: (}\'i+l - )"i) Ay — }\'i+2) ( )
b2 — RH—Z (14)

(}"i+2 - }"i) (M2 — }\f+1)

Upon performing these calculations, the problem is set up as a root
problem so that

aM+ai+(a,—R)=0 (15)
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Although solution of Eq. (15) appears to be straightforward, via the
quadratic formula

—a, * \/af —4a,(a, — R)
2a,

A= (16)

a number of conditions exist which warrant special attention. First, if @, is
equal to 0, which may happen with very low A values, although this has
never been observed using Eq. (3) as the generator, Eq. (16) will not work;
the problem is reduced to a linear solution:

R_a()
a,

A= (17

and A is found for this R value. Using Eq. (3) as the generator, in practice
one root of Eq. (16) is found to be the correct one and it is a small matter
of programming to test both roots and see which root (A) lies in the range
{A»Ai+2). The present subroutine does check a number of other conditions,
mostly as safety mechanisms. If both roots (A’s) are in the range {A. A},
then these values are fed into Eq. (3) (or other suitable form), and both R
values are calculated. The A with the closest calculated R value to the
given R to be converted is then used as the found A value. Also tested is
the case where the quantity inside the square-root operator in Eq. (16) is
negative, indicating the roots are complex; if this occurs, then an error
code is passed to the calling program and the program operation is
aborted; however, this should never occur and has never been observed
in practice. The search pointer for the next R value in the lookup table
starts where the last value was found, avoiding the complete search for
every R value.

ERROR ANALYSIS

A separate error analysis program is written which generates 7000
values of A, equally spaced across the logarithm of A between 1.0 and
—5.75 inclusive. The coresponding R values, calculated from Eq. (3), are
passed to the conversion subroutine where A is calculated. The per-
centage difference between A calculated from the conversion subroutine
and A from the error analysis program is shown in Fig. 2, plotted as a
function of the lngarithm of A. As can be seen from Fig. 2, the error is
totally negligible for the majority of the elution range. In the infrequently
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F1G. 2. The percentage error in A as a function of the logarithm of A.

used region near the void peak (large R and A), A has a maximum error of
approximately 1 part in 10,000. This is of sufficient accuracy for any FFF
experiment. One further consideration here is that occasionally one will
call this subroutine more than once, for obtaining isolated A values,
rather than running this as an array-oriented subroutine. In the
subroutine developed for this work, the lookup table is created only once.
Subsequent calls to the subroutine avoid the recalculation of the table
and set the lookup pointer back to the top of the arrays. This provides fast
operation even for isolated point by point conversion.

CONCLUSIONS

The algorithm described above is seen to be a high accuracy, fast
solution to the general problem of R to A conversion which is performed
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on all quantitative FFF experiments. It avoids iterative calculation and
initial parameter estimation, and can be programmed in a minimum of
memory space with very modest array storage requirements. All software
described in this communication is available from the author upon
request.
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