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NOTE 

Fast Algorithm for the Conversion of R to Lambda 
Values in Field-Flow Fractionation 

MARK. R. SCHURE 
LABORATORY DATA PRODUCTS GROUP 
DIGITAL EQUIPMENT CORPORATION 
1 IRON WAY 
MARLBOROUGH. MASSACHUSETTS 01752 

Abstract 

The numerical methodology needed to convert the retention ratio, R .  to the 
dimensionless mean layer thickness. A, commonly encountered in field-flow 
fractionation (FFF), is reviewed and a rigorous interpolation scheme which is 
suitable for any of the FFF techniques is presented. Computer implementation 
and error estimates are discussed in detail. 

INTRODUCTION 

A common operation found in all field-flow fractionation (FFF) 
experiments is the routine conversion of the fractogram on a time scale to 
a fractogram on a h scale. Although this operation would at first seem 
trivial due to the wealth of theory which exists, in fact this operation is 
nontrivial because there is virtually no analytical form available for this 
operation with sufficient accuracy over the entire elution range. This is in 
contrast to a number of mathematical equations which express R ,  the 
retention ratio, as an anaiytical function of h, the dimensionless mean 
layer thickness. Once the fractogram is converted to an elution scale in 
the h domain, it is easy to convert to molecular weight or particle size for 
the techniques of thermal FFF (I), sedimentation FFF (2), electrical FFF 
(3), and flow FFF (4). 
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A number of numerical techniques exist for the interpolation of values 
in the independent variable, given the dependent variable value and a 
relationship relating one to the other. In this note we consider a most 
rigorous, noniterative approach to this inversion problem and provide 
specific details of its implementation with respect to any of the field-flow 
fractionation techniques. 

THEORY 

An experimental fractogram records the concentration or some 
detector response similar to concentration as a function of time. The first 
transformation to be made is to convert the retention time, tr, to the 
dimensionless parameter R, the retention ratio, which is related to 
retention time by 

where to is the void time. From a fundamental standpoint, R is related to 
the average velocity of zone migration by 

<c(x). u ( x ) >  
<c(x)> <u(x )>  

R =  

where c(x) is the concentration of the solute zone as a function of x, the 
distance above the lower channel wall, and u(x) is the fluid velocity as a 
function of x. The operator <> denotes a cross-sectional average. The 
quantity R can be analytically expressed as a function of h: 

R = 6hc0th - - 12h2 [:hI (3) 

Although this expression has been found adequate for sedimentation 
FFF, flow FFF, and electrical FFF due to the uniform viscosity across the 
channel width, further research has shown that a much more complex 
expression is required for thermal FFF (1) to include the effect of 
temperature dependence on fluid viscosity. We will now review the 
numerical procedures which have been used to obtain h when R is 
given. 
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NUMERICAL METHODOLOGY 

It is beyond the scope of this note to review all of the available 
methodology for finding an independent variable, given the dependent 
variable. Some of these methods are reviewed in Ref. 5. The most 
common method of finding A, given R ,  is to express Eq. (3) as a root- 
finding problem, i.e., 

R - 6h coth - - 12h2 = 0 [:hl (4) 

For this technique it is desired to find h, given R ,  so that Eq. (4) is 
satisfied. A common approach to this is to use the bisection method (9, 
where it is assumed that h is between some range (A,,A,+,) and this range is 
iteratively searched via an algorithmic procedure which typically halves 
the search range every iteration. This is continued until some criteria of 
convergence is achieved. Although this method gives reasonable ac- 
curacy, it is slow and is not robust because of difficulties in picking the 
search range. It is not obvious, a pn’ori, what this range should be, and 
some form of lookup table is needed for proper operation. 

Another metho? of finding A, given R ,  is to minimize the left-hand side 
of Eq. (4) using a minimization algorithm, such as the Newton-Raphson 
method (5), whereby an initial guess of h is made, given R ,  and iteration is 
performed until some convergence criterion is met. Preliminary work has 
shown that even with a very robust routine from a major mathematical 
software vendor, convergence was not achieved for some R values greater 
than 0.3, even when the exact h was used as the initial guess. In all of the 
methods similar to the Newton-Raphson method, there is no guarantee of 
convergence here even when the parameter to be obtained is under 
numerical constraints. 

Another method to be considered and extensively investigated in 
preliminary work is the use of an interpolating polynomial of the form 

h = a, + a,R + azR2 + anRn ( 5 )  

where the coefficients a. through a, are chosen so that the least-squares 
criterion is minimized: 

min = x ( h ,  - [ao + a,Ri  + a$;! + a,R;])’ (6) 
I 

In practice, this method may only be approached as a piecewise 
approximation, i.e., a valid range of R (and hence A) is chosen so that 
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unique coefficients are determined over a narrow range. This is noted to 
occur because h changes drastical!., with R when R approaches unity, yet 
h changes only slowly with R at low values of R .  This is shown in Fig. 1 
using Eq. (3) with the axes reversed for plotting. This aspect also explains 
some of the difficulty encountered with the Newton-Raphson method. A 
further difficulty with the polynomial method is that most polynomials 
are numerically unstable for large values of the independent variable 
(5). 

Along the lines of a polynomial expression, such as that used in Eq. (5) ,  
a more rigorous method is that of piecewise interpolation with Pade 
approximation (5), whereby the ratio of polynomials is used as a basis 
function over a narrow range of R:  

4.00 

3.00 

2.00 

I .oo 

0 .oo 
0.00  0 .20  0.40 0.60  0 .80  1 .oo 

R 
FIG 1. h a\ d function of R wing the rcldtion\hip z\thli\hcd h) I q ( 3 )  
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(7) 
a ,  + a , R  + a$* + a,$" 
1 + b,R + bzR2 + b,R" 

h =  

This approach has been used in preliminary work with some degree of 
success although six piecewise ranges must be employed to obtain 
accuracy of I part in 1000 in the higher h range with a quadratic basis in 
the numerator and denominator of Eq. (7). A problem with the functional 
form of Eq. (7) is that a great deal of work is needed to optimize the 
coefficients, and the maximum degree of the basis functions is not clearly 
defined although Eq. (7) can be written so that orthogonal expressions 
are used. When orthogonal functions are used in Eq. (7), further accuracy 
can be obtained by increasing the basis degree (until numerical 
instability sets in) because the coefficients a and b are independent of the 
number of terms used in the numerator and the denominator. This 
approach is also inflexible in research because one would like to be able 
to change easily the functional form of R ,  as a function of h, without the 
burden of determining a new set of coefficients. Toward this end, an 
extensively tested algorithm combining a sophisticated lookup table with 
quadratic interpolation in R rather than in h is presented. 

R TO LAMBDA CONVERSION 

All software used here was written in FORTRAN 77 and executed on a 
microVAX I1 (Digital Equipment Corp., Maynard, Massachusetts); the 
code will also run on a small microcomputer since it is short in length 
and requires little memory. The software described here is in the form of 
a subroutine. The main program calls this subroutine and passes an 
array of R values and the number of R values to be analyzed. The 
subroutine passes back the h values in an array. The R values are 
assumed to be monotonically decreasing, as would be the case in a 
normal fractogram. The R values are also assumed to be in the range 
0.9999 > R > 0.00001. If these conditions are not met, an error code is 
passed back to the calling program. 

The first step taken in the program is to calculate a table of h values 
and the corresponding R values via Eq. (3), although in research 
applications where Eq. (3) may not be used, the same procedure is used. 
Nonuniform spacing is used in this table as indicated in Table 1. This is 
done to ensure that the polynomial interpolation is performed on a very 
finely spaced grid where known deviations from quadratic behavior lie. 
The search is then started on the R lookup table data searching from high 
R values to low R values until R values are found such that R, > R and R,+I 
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TABLE 1 
Spacing and Number of Data Values in the Lookup Table 

- 

Number of data 
Range in A Corresponding R range in lookup table 

1 <A<10 0.98372 < R < 0.99983 45 1 
198 

0.01 < A < 0.099 5.8800 X < R < 0.47643 90 

99 

0.1 < A < 0.995 0.48005 < R < 0.98356 

0.0001 < h < 0.@099 5.9988 X < R < 5.8224 X low2 99 
0.OOoooO1< A < 0.oooO99 5.9999 X lo-’ < R < 5.9388 X 

< R, where the subscript denotes the index ofR in the lookup table. If this 
condition is not found, an error condition is reported. Next, Lagrange 
interpolation (5)  is performed to find the local quadratic equation 

The formulas for Lagrange interpolation expressed in the form of this 
problem are 

a 2  = bo + b l  + b2 (1 1) 

and 

Upon performing these calculations, the problem is set up as a root 
problem so that 

azh2 + a,h  + (ao - R) = 0 (15) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
0
8
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



LAMBDA VALUES IN FIELD-FLOW FRACTIONATION 2409 

Although solution of Eq. (15) appears to be straightforward, via the 
quadratic formula 

a number of conditions exist which warrant special attention. First, if a2 is 
equal to 0, which may happen with very low h values, although this has 
never been observed using Eq. (3) as the generator, Eq. (16) will not work 
the problem is reduced to a linear solution: 

R - a ,  A=--- 
Q I  

and h is found for this R value. Using Eq. ( 3 )  as the generator, in practice 
one root of Eq. (16) is found to be the correct one and it is a small matter 
of programming to test both roots and see which root (A) lies in the range 
{A,,A,+J. The present subroutine does check a number of other conditions, 
mostly as safety mechanisms. If both roots (A's) are in the range 
then these values are fed into Eq. ( 3 )  (or other suitable form), and both R 
values are calculated. The h with the closest calculated R value to the 
given R to be converted is then used as the found h value. Also tested is 
the cabe where the quantity inside the square-root operator in Eq. (16) is 
negative, indicating the roots are complex; if this occurs, then an error 
code is passed to the calling program and the program operation is 
aborted; however, this should never occur and has never been observed 
in practice. The search pointer for the next R value in the lookup table 
starts where the last value was found, avoiding the complete search for 
every R value. 

ERROR ANALYSIS 

A separate error analysis program is written which generates 7000 
values of h, equally spaced across the logarithm of h between 1.0 and 
-5.75 inclusive. The coresponding R values, calculated from Eq. ( 3 ) ,  are 
passed to the conversion subroutine where h is calculated. The per- 
centage difference between h calculated from the conversion subroutine 
and h from the error analysis program is shown in Fig. 2, plotted as a 
function of the logarithm of A. As can be seen from Fig. 2, the error is 
totally negligible for the majority of the elution range. In the infrequently 
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-1.00E-02 I I I I I I I 
-6 .00 -5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 

LOG LAMBDA 
FIG. 2. The percentage error in h as a function of the logarithm of h 

used region near the void peak (large R and A), h has a maximum error of 
approximately 1 part in 10,000. This is of sufficient accuracy for any FFF 
experiment. One further consideration here is that occasionally one will 
call this subroutine more than once, for obtaining isolated h values, 
rather than running this as an array-oriented subroutine. In the 
subroutine developed for this work, the lookup table is created only once. 
Subsequent calls to the subroutine avoid the recalculation of the table 
and set the lookup pointer back to the top of the arrays. This provides fast 
operation even for isolated point by point conversion. 

CONCLUSIONS 

The algorithm described above is seen to be a high accuracy, fast 
solution to the general problem of R to h conversion which is performed 
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on all quantitative FFF experiments. It avoids iterative calculation and 
initial parameter estimation, and can be programmed in a minimum of 
memory space with very modest array storage requirements. All software 
described in this communication is available from the author upon 
request. 
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